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ABSTRACT 

Symmetry breakingpatterm and phenomenologg of tlae SO( 10) and SU(5) 
compztifications of the Eex Ee’ heterotic superstring recently proposed by Witten 
are examined with regard to Ihe fermion mass matrix Under some cirnnmtar@es 
there exist constraints due to the presence of relatively light charged leptons. 
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Superstring theories may be the first consistent models which unify gravity 

with the other interactons As such they must be able to predict, amongst other things, 

the pattern of gauge symmetry breaking and the fermion mass spectrum. Given the . 

fact that a complete formulation of such theories is still lacking, it is not possible to 

attempt a detailed analysis of these questions. However, it is cerlainly worthwhile to 

pursue a a program of obtaining as much general information on these problems as is 

possible from the present formulation. Such a programwas initiated in [ l] vhere the 
Egx Ea’ heterotic string theory [2] was compactified on a Calabi-Yau [3] manifold, K. 

This gave rise to an effective E,j supersymmetric grand unified model for the zero 

modes in which the number of matter fields transforming as 2_7 or g of Ee was given 

by topological invariants of K. This program was continued in [4] where it vas 

shown hov the topology and symmetries of K could determine the possible patterns 

of syinrnetry breaking and couplings in the superpotential. Other phenomenological 
constraints on & superstring models bag been discussed in ref. [SJ 

In a previous publication[6] ve used the topological methods of [4] and the 

assumption that the up and down quark mass matrices vere non-zero at tree level to 

arrive at more constraints on the pattern of symmetry breaking and constraints due to 

relations between the mass matrices of the charged and neutral leptons. In this paper 

we vi11 extend our previous tiysis to the possible neu superstringcompactificatiom 

discussed by Witten [;1 which give rise to SO( 10) or SW(S) supersymmetric unified 

models as an effective lov energy theory. We will see that, despite the fact that no 

explicit construction of these compactifications exists at present, a surprising amount 

of informationcan be derivxt about the pattern of SO( 10) symmetry breaking (there 

is, of course, only one possibility for SU(5)). There is the possibility that new 

wticles may arise in the low enerfl phenomenology of these theories with 

interesting experimental consequences. 
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Let us first reyiev the mechanism of gauge symmetry break& ~tia Wilson 
loops described in [ 1,4, g].‘Ve consider Calabi-Yau manifolds K of the form K,iG 

where K, is asimply connected Calabi-Yau manifold, G is a discrete group of 

transformations that act holomorphically and without f&d points on K, and K,IG 

means that we consider the points of K to be the set of equivalence classes of points of 
K, under the symmetry G. Then K is non-simply connected and, in fact, nl(K) ; G. 

Due to this fact, there may exist non-trivial gauge configurations on K that cannot be 
gauged avay despite the fact that their field strength F, vanishes. These 

configurations can break the gauge group H (previously E6, currently either SO( 10) 

or SU(5))to a subgroup 1 due to their contribution to the vacuum value of the Wilson 

loop operator giwn by 

U,=P exp[ ijr An&m] (1) 

Here r is a non contractible loop on K,,/G vhich is the image of a non-trivial path 

from z+,to g.x,onK,. Themappingsendingg~GtoUr~Hisahomomorphismof 

G onto a discrete subgroup 5 of H. As demonstrated in [4], the particle fields in the 
spectrum on K,,/G are those fields Y(X) on K, vhich satisfy the boundary condition 

Another vay of saying this is that the only permissible particle fields on K,IG are 

those invariant under the action GO?? as given in eq (2). From eq (2) and the fact 

that the gauge fields must be G tivariant ve see that I: is the gauge subgroup tlzt 
commutes vith all of the U,, In the E+, case with only onez, corresponding to the 



l’&ler form” - ) &G I;&,$~ iy”vfll~,t ro:qoljjr,k of3 xe ;yuzt those tti.21 kre rld.r3l 
under U, This n&e the analysis very simpie and resulted in Ure existence of Hig@ 

doublets and singlets that were unaccompanied by any dangerous color tripplets. 

We now turn to the more recent work of ref [7]. Wttenbas claimed that 
certin stable, irreducible, holomorpbic vector hundfes vitbSU(4) or SU(5) 

structure groups can be constructed over Calabi-Yaumanifolds. These result in 
Ee’xSO(lO)andEe’xSU(Sj N=lsupersymmetricgaugetbeoriesrespeciivelyin 

four dimensions The Ee’x E,j model previously discussed is of this type, where the 

tangent bundle with SU(3) structure group” was considered. As in the Ee case, we 

may now ask what the representation content of the cbiral superfields appearing in the 

low energy theory is. In the SO( 10) case we have 

c$+Nr~tt(l$t+)t c1_0 (3) 

The numbers o&, S and c are given by the following topological invariants: 

cc= dimHl(End B), Nf =(lIZ)&(B)16 = dimHt(B*), e = dim (I?@@&. HereB 

is Us SU(4) vector bundle with the fibre being the representation space of the 
fundamenti representation of SU(4),Cz(B) is its third Cbern number, B* is the dual 

bundle to B, (Bfi)AS is the antisymmetrized tensor product bundle, End B is the. 

bundle of endomorpbisms of B, and HI (Vj is the first Dolheault cohomology group 

with values in the vector space V [QJ. For the SU(5) case, the representation content is 

a’!+m~tnl~ts(5+5)tc(lct+) (4) 

‘The K&ler form on K, is nzessarily G invariant if K&G is to be a Calabi-Y au 
manifold. 
*Calabi-Y au manifolds have an SU(3) holonomy and this is, by definition, the 
structure group of the tangent bundle. 
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Where if B’ &no&s tffi sl.l( 5) ;vcktr ~WJ& wltjj fibre +.jJe rEpMit2.ti~:~rJ spze of’tiJ? 

2 of SU(Sj, thentL’=dimHl(EndB’j, m =(1/2)IC3(B’jL n = (Xj IC3((B’xP’jas)), 

S = dim Hl(B’ j, c = dim (H~(B’xEY)&. One point of note is that the index theorem 

that gives Nf in the SO( 10) case also tells IX that if a state of the !$ remains light after 

symmetry breaking by Wilson loops then it is paired up F:itiJ a corresponding SM.? 

from the E. Similar statements can be made about the states within the g of SO( IO), 

andthe?andz, and lJanc@intheSU(5)case. 

We are now ready to extend the analysis of ref [6] to these new manifolds. We 

assume that the up and down quark mass matrices do not vanish identically at tree 

level* Thus,there must be sufficiently many Higgs doublets left invariant by the 

action of GO??‘. Before we proceed any further, we must specify the action of G on 
the fields. In the Eh case there was an explicit correspondence between 

representations transforming as?, say, and ( 1,l) forms. If there was only one of 

these present (i.e., the KZhler form) thenit was automatically G invariant as stated 

earlier. Unfortunately, there is no =mch correspondence in the present situation 

Nonetheless, we may still deduce the action of G on fields Y that are to be C@ 

invariant. Since the elements of 3 belong to the gau@ group H, their action can at 

most reshuffle fields & a fixed irreducible representation of H. Thus, if Y is to 

be G@c invariant, the action of G must not mix it with’ other fields Y’ in a different 

irreducible representation of H, since such a mixing cannot be undone byz. In fact, 
the action of G on G&invariant fields canonly multiply Y by an overall phase I-Q, 

so that&l components of an irreducible representation of H acquire the m phase”. 

Armed with this knowledge, we now proceed to derive the constraints onsymmetry 

*But we do not rule out either zero entries or zero eigenvalues in these matrices. 
**This point seems to have been overlooked by the authors of ref [ 101 (which we 
received after this work was begun) who allowed different components of an 
irreducible representation fo acquire different phases under G. 
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bre&irg paf&rm imposed by f& demti I.liit Higg d~:~I,ubletr ezr a~ Zero rXde2: ‘:a 

I&)/G. 

Let us first deal with the SO( 10) case. To do this we note [4] that G cannot be 
non-M&an so the rank of the unbroken subgroup z must be five. We parameterize 
U, uing the SU(4 j&XJ(2)Lx%J(2 )R b&s of SO(1 Cl): 

P B %” 
L j 

P 8-3 x iy J x k ),4) 15) 
where 12 = I for Sum to be invariant and p, y, y are phases. Ne:& we decompose 

the @, E and adjoint 42 representations of SO( 10) under the subgroup 
~=SU(3)&U(2)~xU(1)&J(1~FJ whereU(1)15appearsinthemazimal 

decompositionSU(4),9J(3),xU(1)15 and U( 1)s~ is the U( 1) subgroup of SU(2jz. 

16=(3,_2;1,0)~~,_2;-3,0)+(~~;-1,1)~(~,~;3,1j+(~,~;3,-1) (6b) 

45=(;,$0,0)+ (c,~;0,0~~~1,~;0,2~t(1,1;0,0~t~,1;0,-2~ 
+(~,,2;-2,1)t(~,,Z;-2,-1)t(~,~;2,1)+~,~;2,-1)t(~,~;0,0) 

+ Q,?; -4,oj + @, 1; 4,oj W 

The required doublets are contained in the l,O since those in the 1,6 are useless 

due to the absence of a ( @)3 coupling. We must demand that both types of doublets in 

the l0, &?; 0, 1) and G,z; 0, -l), he presentinthespectrumfor the following 



reasom: 1) both are needed ni order to @?‘e the up aA the dOvn quarks a rJXJ%, 21 

both are required so that both chirahty states of the higgsinos be present, 3) the index 

theorem can only be satisfied if both doublets are present. Let us now specialize to the 
case where only one l,o is present, i.e., dimHl((BxB)& = 1. Notingthat the SLJ(4)c 

and SJ.J(2jR piece:: of U, are proportional to the generators T15 ani TAR of U( 1)15 

and lJ( 1 j3~ respectively, and denoting the phase acquired by +.f~e z under G by ‘110, 

we have: 

P ‘110 = P-lwi =l,or $=nl$= 1 (7) 

From eqs (5) and (7) we immediatly deduce that W(2), is alaays unbroken by the U, 

(as in the Ee case [‘i]). Furthermore, if ~1 z 1, G must contain a Zz subgroup which 

thenimplies that the order of G is even. The smallest unbroken subgroup in this case 
is sv(3),~(2k~(2j~U(1)15. If p3 = 1 vehave SU(~)&U(~)L~SU(~) as 

the unbroken subgroup, while if p = 1 and. 82 = 1, then SO( 10) remairs unbroken 

This exhausts the possibilities for 2 if only one I,0 exists. If mXe g’s appear as zero 
modes then groups such as SV(3&XJ(2j~xU( 1 )15xU(1)3~ may appear [ 1 O]. It is 

?ery interesting to see the tight correlations between tire topology of B (i.e., the index 

theorem), phenomenology (quark masses), the al!oved groups of transformations G 
on the Calabi-Yau manifold II, ) and the allowed non-trivial vacuum configurations 

of SO( IO) gauge fields on K,/G. In particular it appears that under certain 

circumstances some vacuum configurations of gauge fields (i.e., values of U,) are not 

permitted since they would lead to a particle spectrum inconsistent with the index 

theorem 
Since z always contains sum in the case considered, we must have a 

mechanism to break z to the standard model. Witten [7] showed that it is plausible 

that the SU(5) singlet in the 1,6 could acquire an intermediate scale vacuum value 



(~1Oe ZeV), thus breakins: Sum at a scale verjr large compared to I*&. If the 

singlet is to come from an “incomplete” multiplet (i.e., from one of the E (1,6 + ij)), 
we arrive at the condition that 116 p3 ye1 = 1 sum invariance then imp& that the 

“positron’ state of this !j is GOT invariant and the index theorem implies that these 

states have counterparts coming from the s. We may now list the G@c 
transformationlaws of the (single) g and of the 12 whose phase 116 satisfies the 

above condition. This is done irl Table ( 1). If the number of @O’s is larger than one 
and r = SU(3)cxSU(2)~xU(l)~~xU( 1)15, then the singlet mzy be taken from one of 

the Nf 16’s, since in this case one may breal : 2 at a scale O(TeV) without incuring any 

problems with phenomenology [5]. Under this CirCUmStllnce 716 iS unrelated to B 

and p. 

The SU(5) case is much simpler since there is only one pattern of symmetry 
breaking. The Ug’s take the formexp(3iaY), where Y is is the weak hyperctige and 

is proportiolul to (113) T15 + TAR. The Higgs doublets are contained in the Q+z)‘s. 

If rtj is the pke acquired by one of these 5’s, then the condition that its doublet 

remains in the spectrum is 15 exp(-3icL) = 1. The index theorem requires a doublet 

from a1, so one of I&~‘S must have a G phase opposite to 15. The requirement that 

no color triplets appear fromihexs is ‘15 exp(2ia) : 1 which implies that G cannot 

be 5. One must also ensure the lack of color triplets coming from the y’s, which 

imposes conditions onnm (the G p&e of the l,o of SJ(5)) relative to L 

We now turn to some phenomenological considerations that were absent in the 
Ee analysis. The question is: what happens ‘to the superpartners of the Higgs scalars? 

In Ee they were all able to acquire a large mass and thus leave present phenomenology 

wtouched [6]. It is not at all clear that this happens in the SO( 10) and SU(5) models. 

We will first considcr the SO( 10) case. There are two possibilities to consider, 

depending on whether or not SO( 10) singlet super-fields are present (i.e., on whether 

or not dim Kl(End B) is nonzero). If such singlets exist & can -acquire sufficiently 



large vacuum expectation values, coupling5 such z lJ.tO.! and !6.i& 1 vi11 allow YYY 
these states to decouple from the low energy spectrum. However, it is certainly 

possible that dim Hl(End B) is zero, in which case the situation must be examined 

more carefully. For simplicity let us consider the case where there is a single jj and 

where the intermediate scale breaking is triggered by the SU(5) singlets coming from 
a smgle “mcomplete” ( 13 + E) multiplet (i.e., we k&e 6 = 1). Then we haye the 

following new (left handed, by convention) fermions: 

--two Sum doublets from the l& (which&o form two SU(Z)F, doublets) 

--two neutral states together with an Sum singlet “positron” st& and its 
aihpadicle from the 1,6H + i& respectively 

In order to consider the charged lepton mass matrix we first list ti relevant 

chkged particles. They are: 

-- the skr&rd charged leptons ei (i = e, p, T,.. .) and their right handed 
conjugates eic 

-the charged components of the two SU(2)l doublets from the l&, E and EC 

--the Su(2jL singlets, a- and@, from the i& and EH respectively 

--and the charged Su(2)~x SU(2)R gauginos, h&P. 

The euginos can only appear in mass terms with fermions whose s&r partmrs haye 

obtained a vacuum value. The mass terms are given by (schematically): 

Yijgil$j-cgHs -3 yiieicej++hc. 

yi L$_6i1_6K <$HZ + yi^e” ei <Qs + h.c. 

yi 1,6iciH -c&z. +yi EC ei -zV> + hc. W 



where the subscript H denotes an incomplete multiplet that contributes a Higgs scalar. 
The gaugino mass terms are (where gyp is the SU(~)LP gauge coupling ): 

gL ( ?\+L E <+> + h-L EC + ) + h.c. Pa) 

gR (,J+R E + + LR EC + + i,,R a-<V, + I,.R$CCVP~) + h.c. (Qb) 

Here c$> denotes an Sum doublet vacuum value from the 3~ (we use the same 

symbol, -+, to denote both of the distinct Sum doublet vacuum values from the 

gH, since we are just performi\qan order of magtitude ana@sis at the present), 

While s\l> denotes an Sum singlet vacuum value from the EH. The mass matrix 

takes the schematic form 
I ef EC 3 A+L A,R 

-I 
f?.i I yii + yi <v> yi+ 0 0 

E I 0 0 0 SL c* gR +=- 

a I 0 0 0 0 gR C'v'> 

j,.L 1 0 SL + 0 ml 0 

LR / 0 gR q=- gR'V' 0 m2 

(10) 

where we have added diagonal gaugino terms arising from supersymmetry breaking 
withml~=O(m3&[11]. 



In the E6 model the incomplete mukiplet mechanism entailed the edstence of 

quantum numbers that distingkhed betveen &7 and 27~. If this also occurs in the 

SO(10) model, then l$*gp~*@~ cannot exist if E*E*~H does (whichmustsince itis 

this coupling thal gives the standard fermions their masses). This sets yi and yt to 

zero and prevents mixing betveen the standard leptons and ‘any of the new particles. 
Let us assume that this is what happens in vhat follows. If I: contains SlU(zh, 

then ,g~cV> >> ml ,2 :: O(Tev) [ 51 and the mass matrix ma.y be approximately 

diagonalized. The eigenvalues (not including those of the standard leptons) are of the 
order Of: M&ml, ml, &::V>, ~R:F.” Vr. If ml vere 1 Tevwe would predict a 

charged lepton of mass E O( 10 Gev) which could have easily been seen in e+e- 
ekTeriments. If ml:: M, then a similar analysis shows that this mass gets pushed up 

to O(M,) so ve would predict two new charged leptons with such mass. Note that 

for standard Yukava couplings (= 1 O-2 + 1 O-z), terms that vould arise from 
lj-&*Q~ would not affect this result. Thus, under the assumptions that 

g%<V> 1) rnl2, ml c 1 Tev, - 9 = 6 = 1 ml dim H1 (End B) =O, ve wo~ukl predict mw 

light char,& leptons that ma;y be seen in the next generation of experiments. 

What happens if some of the parameters are changed? If C> 1, so that J? need 
not equal one and SU(2)R need not be present in 1, SC and a- are absent from the 

spectrnm md the new lept@I?S have mseS z ml, and &‘b’>. If $=I ?2i 6 > 1 i we may , 

have (depending upon whether or not the additonal (j$ + g)‘s have the same G 

transformation properties as the original one) at most S copies of %C and a- vhich do 

&mix with one another. We would expect that “low” mass leptom vould exist in 
this~~ea.lso. If$t 1 and z = su(3),>CjU12hxU(1)15xU(1)3R, theintermediate 

scale vacuumvalue may arise fromthe SU(5)singletcomponentof one of the 
standard g’s (so that@ and a- may be absent). This mixes@ with hR but with small 

mixing angle. Finally, if we assume that ml ,2 )) &XV> (the case of a supermassive 



savitino), ml z m2, and (g~fg~) > (gpi'> i mz) (whichis con&tent with gL ” gR 

and ml 2 x &<v>), our results above still obtain. 

Let 1~s turn next to the neutral leptons of the SO( 10) model. Again, we will 

assume that c = S = I and dim Hl(End B) - 0 (the case where gauge singlets etist has 
been partially treakd in [7,12]). The relevant particles in this case are: vi, *+ (i= e, 

II,, T,. ), the left and right handed (conjug&) components of the shndard neutrirq 
the Sum partners of E and EC, N and W respectively,.the Sum partner: of 3, a-, 

V, and 6 respectively and liie neutral gauginos A3L, k3R, and k15 associated with T3L, 

TSR, and T15 respectively. This leads to a (2Nf + 7) x (214 e 7) mass n-&i:: about 

Prhic%e say little erccept that the various mechanisms that were proposed to give rise 
to a sensible neutrino mass spectrum in the Eb case might work similarly in this case 

a: well [6, 121. 

Finally we turn to the phenomenology of the SU(5) models. We have nothing 

Ned to say about the neutral sector and concentrate instead on th charged lepton 

sector. Let us assume that we have only one pair of double& coming from Q+ 3) arti 

nothng from (@ + D). Then the char,@ leptons at our disposal are the standard 
ones ei and e%, E and EC from the 1 and 2 respectively, and the chr$d SU(& 

gaqinos I,+L, j&L. The only Yukawa coupliqz available lead to ti mass tmns 

5 I_0 -&>, & ~IJ <s& and the gaugino coupling gL ?.,L E ~4 >. T&se give rise ‘to 

the folloakg mass matrix 

I ejc EC A+L 

--A 
ei I yij + 0 0 

E I yj + 0 bnL + 
AL 1 0 si -4’ m312 



In the litit that rn3(2 >>gL +- = M, x y +, the approknate eigenvalues are rn3/2, 

y c+ and M&rq~2. For rn312 :: 1 Tev we again find a charged lepton of mass 

= 0( 10 Gev) If rn312 :: M, we have two charged leptons of mass = O(l&). If we 

dlow the “positron” states of (@H + DH) to remain in the spectrum then the analysis 

is similar to that of SO( 1 [I) with states@ and a- (but no !&. 

‘We have seen that phenomenological consideratiom arisirg from the fermion 

mass matrices can in fact constrain the possible bundles used in the neT! 

compactificatiom used in ref [7]. In particular bundles B f-r which dim Ht (End S I=0 

have a potential prohlem \Yth the appearance of light charged leptons 
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SOf 10) T 
-.A. b G@G 

l! e, 1; 2,Q FP--l 
CL!; 40) P2P 
il,2;0, 1) 1 
(1,:; 0, -1) 1 

j$ @,Z; 1, 01 p-2 jI 

Q,Z; -3,O) p-f, p 

Q,,1;-1,lj p-4 

(3, j;-1, -1) p-4 

CL,!; 3, 1) 1 

u,,1;3,-1) 1 

Table 1: GI% transformations of tix components f6 the “incomplete” $1 and 

(E + i6j multiplets for ths case of only one JJl irrep. 
ro = su(3)cf142jLXt7( 1)15xu( 1)3R. 


